Hierarchical Classifier

نویسندگان

  • Igor T. Podolak
  • Slawomir Biel
  • Marcin Bobrowski
چکیده

Artificial Intelligence (AI) methods are used to build classifiers that give different levels of accuracy and solution explication. The intent of this paper is to provide a way of building a hierarchical classifier composed of several artificial neural networks (ANN’s) organised in a tree-like fashion. Such method of construction allows for partition of the original problem into several sub-problems which can be solved with simpler ANN’s, and be built quicker than a single ANN. As the subproblems extracted start to be independent of one another, this paves a way to realise the solutions for the individual sub-problems in a parallel fashion. It is observed that incorrect classifications are not random and can be therefore used to find clusters defining sub-problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hierarchical Classification Method for Breast Tumor Detection

Introduction Breast cancer is the second cause of mortality among women. Early detection of it can enhance the chance of survival. Screening systems such as mammography cannot perfectly differentiate between patients and healthy individuals. Computer-aided diagnosis can help physicians make a more accurate diagnosis. Materials and Methods Regarding the importance of separating normal and abnorm...

متن کامل

bwbaugh : Hierarchical sentiment analysis with partial self-training

Using labeled Twitter training data from SemEval-2013, we train both a subjectivity classifier and a polarity classifier separately, and then combine the two into a single hierarchical classifier. Using additional unlabeled data that is believed to contain sentiment, we allow the polarity classifier to continue learning using self-training. The resulting system is capable of classifying a docum...

متن کامل

An Extended Local Hierarchical Classifier for Prediction of Protein and Gene Functions

Gene function prediction and protein function prediction are complex classification problems where the functional classes are structured according to a predefined hierarchy. To solve these problems, we propose an extended local hierarchical Naive Bayes classifier, where a binary classifier is built for each class in the hierarchy. The extension to conventional local approaches is that each clas...

متن کامل

Systematic Construction of Hierarchical Classifier in SVM-Based Text Categorization

In a text categorization task, classification on some hierarchy of classes shows better results than the case without the hierarchy. In current environments where large amount of documents are divided into several subgroups with a hierarchy between them, it is more natural and appropriate to use a hierarchical classification method. We introduce a new internal node evaluation scheme which is ve...

متن کامل

Incremental Algorithms for Hierarchical Classification

We study the problem of hierarchical classification when labels corresponding to partial and/or multiple paths in the underlying taxonomy are allowed. We introduce a new hierarchical loss function, the H-loss, implementing the simple intuition that additional mistakes in the subtree of a mistaken class should not be charged for. Based on a probabilistic data model introduced in earlier work, we...

متن کامل

Automatic classification of eating conditions from speech using acoustic feature selection and a set of hierarchical support vector machine classifiers

The problem of automatic classification of seven types of eating conditions from speech is considered. Based on the confusion among different eating conditions from a seven class support vector machine (SVM) classifier, a hierarchical SVM classifier is designed. Experiments on the iHEARu-EAT database show that the hierarchical classifier results in a better classification accuracy compared to a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005